
File Handling 6:
Text File Device Drivers
by Brian Long

This is the final part of our series
on aspects of file handling in

Delphi 1 and 2. This month we are
looking at these not very well
known things called text file device
drivers. If you are wondering what
they are, then ask yourself these
questions. Have you ever used the
WinCrt unit in Delphi 1? Or the con-
sole mode facility in Delphi 2? Or
the AssignPrn procedure from the
Printers unit?

If the answer was yes to any of
those then you have used a text file
device driver (TFDD), although
you might not have known it at the
time. You have accessed these in-
put and output facilities by using
Read/ReadLn and/or Write/WriteLn
and the information has come from
the keyboard, or gone to the screen
in some fashion, or to the printer.

These three TFDDs are accessed
in two slightly different ways. The
printer support is used just like a
normal text file variable, but with
AssignPrn being called instead of
AssignFile:

var T: TextFile;
...
AssignPrn(T);
WriteLn(T, ’Hello world’);

However the WinCrt and console
mode support is accessed without
specifying a file variable, eg:

var S: String;
...
WriteLn(’Hello world’);
ReadLn(S);

Read/Ln and Write/Ln do always
operate on text files, despite this
seeming evidence to the contrary.
As it turns out, when no file vari-
able is specified, two System unit
text file variables, Input and Output,
are implicitly used. The above
code is exactly the same as writing
this:

var S: String;
...
WriteLn(Output, ’Hello world’);
ReadLn(Input, S);

Using this information, you could
access the printer without specify-
ing a file variable as follows:

AssignPrn(Output);
WriteLn(’Hello world’);

The idea of a TFDD is to allow infor-
mation to be gathered from, or sent
to, some “device” though the
Read/Ln and Write/Ln standard pro-
cedures via a text file variable, be it
an implicitly or explicitly declared
one. The nature of the device does
not matter, so long as the relevant
supporting code to talk to it is pre-
sent in the TFDD’s implementation.
In the cases described above, the
devices included the keyboard, a
Windows GUI window, a Windows
console window and a printer.

Bearing in mind that a text file
can only be accessed in either read-
only mode (using Reset or Append)
or write-only mode (using Rewrite),
the TFDD can be written to allow
any given any file variable read-
only or write-only access to the
device.

Writing A
Text File Device Driver
When implementing a TFDD you
need to write functions for five pur-
poses. One of your functions will be
called when the device is opened
(using Reset, Rewrite or Append),
when the device is read from (using
Read/Ln), written to (Write/Ln),
flushed (implicitly performed after
input and output) and closed
(CloseFile). The way you set these
functions up is by writing a custom-
ised AssignFile substitute which
assigns the various functions to
four function pointers in the text
file variable. Even though there are

five possible functions, two are
mutually exclusive: the reading
and writing routines are never
used at the same time, so they both
get assigned to the same function
pointer, called InOutFunc.

Note that the real AssignFile sets
up functions in the RTL to deal with
opening, reading, writing etc. files -
normal text file access is achieved
also using the TFDD mechanism
where the “device” is a text file on
a disk.

TTextRec Record Type
In order to get access to the func-
tion pointers in the text file vari-
able, the customised AssignFile
procedure must typecast it into a
TTextRec record. This type, defined
in the SysUtils unit, defines the in-
ternal layout of a TextFile variable.
The definition differs slightly be-
tween Delphi 1 and 2, though not
with any important consequences,
as shown in Listing 1 (next page).

The Handle data field normally
stores the file handle of the repre-
sented text file and the Name field
holds its file name. Mode tells you
the current state of the file: for a
text file this can be fmClosed,
fmInput or fmOutput – the other pos-
sible value (fmInOut) doesn’t apply
to text files. The Buffer field is the
initial text buffer, 128 bytes in size.
This buffer is pointed to by BufPtr,
although a different buffer can be
set up with a call to SetTextBuf.
BufSize tells how big the buffer is,
BufPos says how far through the
data in the buffer we are and BufEnd
signifies the end of the valid data in
the buffer. UserData is some space
unused by the Delphi file system,
intended for use by the TFDD
writer for storing private informa-
tion. In Delphi 1, Private is not used
and so can be ignored, which
leaves the four pointer fields.

Here is a list of the responsibili-
ties of the customised AssignFile

July 1996 The Delphi Magazine 17

and also for each of the functions
referenced by these pointer fields.

AssignFile
Substitute Procedure
This should associate all four of the
device interface functions to the
function pointer fields in a text file
variable. However, this guideline is
often not followed to the letter.
Since the function referred to by
the OpenFunc function will always be
called before any of the others,
many AssignFile routines only set
up OpenFunc. They leave all the
other pointers for OpenFunc to set
up. Depending on the value of Mode,
OpenFunc can set up the remaining
pointers to either input- or output-
based routines. This can save the
functions InOutFunc, FlushFunc and
CloseFunc from having to check the
Mode value.

As well as the function pointers,
this must also assign fmClosed to
Mode, store the size of whatever
buffer is being used in BufSize,
place the address of the buffer in
BufPtr, and clear the Name null-
terminated string field. It can also
do any other initialisation re-
quired, such as storing some data
in UserData. One other thing that is
sometimes done is to set the Handle
field (which won’t be used in a
TFDD) to $FFFF.

OpenFunc Function
This is called when the file is
opened by Reset, Rewrite or
Append. Upon entry, the Mode field
contains fmInput, fmOutput or
fmInOut respectively, as an indica-
tor as to which procedure was
called. Any preparation required
for input or output, as indicated by
Mode, can be done. If Append was
called, and Mode therefore has a
value of fmInOut, it must be
changed to fmOutput.

InOutFunc Function
This function gets invoked by Read,
ReadLn, Write, WriteLn, Eof,
Eoln, SeekEof, SeekEoln, Close
and Flush (if Mode is fmOutput) when
device input or output is needed.

If Mode is fmInput, this routine
must read up to BufSize characters
into BufPtr^, assign to BufEnd the
number of characters read and set

BufPos to zero. If BufEnd is zero, Eof
will be True for the file.

If Mode is fmOutput, this routine
should write BufPos characters
from BufPtr^ and set BufPos to zero.

FlushFunc Function
This routine is called by default at
the end of each Read, ReadLn, Write
and WriteLn. This function can op-
tionally flush the text-file buffer.
Note that this is curiously not
called by the Flush procedure,
which instead calls InOutFunc if
Mode is fmOutput.

If Mode is fmInput, this can set
BufPos and BufEnd to zero to flush
the remaining unread characters in
the buffer. This feature is hardly
ever used.

If Mode is fmOutput, this can
behave much like the InOutFunc
function, thus ensuring that text
written to the file variable gets sent
to the device immediately. If this
routine does nothing, the text
won’t appear in the device until the
buffer becomes full, the file is
closed, or the Flush procedure is
called. It is because this routine
can optionally not do anything that
Flush does not use it.

CloseFunc Function
CloseFile invokes this function
when closing a text file associated
with a device. Additionally, Reset,
Rewrite and Append will call this if
the file is already open.

If Mode is fmOutput, then InOutFunc
will be called before CloseFunc to
ensure all data is written to the
device.

Errors
Each of these four or five functions
(not all of which are necessarily
required) have the following
interface:

function DeviceFunc(
 var F: TTextRec): Integer;

In Delphi 1, they must be compiled
in the far call model. This can be
done by, amongst other things, de-
claring them in the interface sec-
tion of a unit, or by placing the far
keyword after the declaration line.

If the functions return a non-zero
value, this signifies an I/O error has
occurred. The return value of each
function becomes the value that
IOResult will return, or that may
turn up as the ErrorCode property
of an EInOutError exception,
depending on the state of the I/O
checking option.

An Input/Output Device
Our first look at implementing a
TFDD will involve an edit control.
The project TFDD1.DPR does this,
and the TFDD is in RWEDITU.PAS
(see Listing 2). In this case, we are
keeping track of which edit control
is associated with which file vari-
able by storing the edit’s object
reference in the UserData field. To
do this requires a record
(TUserData) to be defined to use in
typecasting UserData, which is not
defined as an appropriate type.
Listing 2 contains one such defini-
tion of TUserData, which is a variant
record. The conditional compila-
tion is required because UserData

Delphi 1 TTextRec

PTextBuf = ^TTextBuf;
TTextBuf = array[0..127] of Char;
TTextRec = record
 Handle: Word;
 Mode: Word;
 BufSize: Word;
 Private: Word;
 BufPos: Word;
 BufEnd: Word;
 BufPtr: PTextBuf;
 OpenFunc: Pointer;
 InOutFunc: Pointer;
 FlushFunc: Pointer;
 CloseFunc: Pointer;
 UserData: array[1..16] of Byte;
 Name: array[0..79] of Char;
 Buffer: TTextBuf;
end;

Delphi 2 TTextRec

PTextBuf = ^TTextBuf;
TTextBuf = array[0..127] of Char;
TTextRec = record
 Handle: Integer;
 Mode: Integer;
 BufSize: Cardinal;
 { Note no Private field }
 BufPos: Cardinal;
 BufEnd: Cardinal;
 BufPtr: PChar;
 OpenFunc: Pointer;
 InOutFunc: Pointer;
 FlushFunc: Pointer;
 CloseFunc: Pointer;
 UserData: array[1..32] of Byte;
 Name: array[0..259] of Char;
 Buffer: TTextBuf;
end;

➤ Listing 1

18 The Delphi Magazine Issue 11

doubles in size in Delphi 2. Note
that a non-variant record would
have done just as well. A com-
mented one appears in Listing 2
below the variant one.

The device interface routines are
declared forward at the top of the
unit’s implementation section. The
customised AssignFile routine
does its housekeeping as per the
outlined requirements above. The
OpenFunc routine does all the
function pointer assignments
based on the Mode value, as also
described above. You’ll notice that
the FlushFunc pointer is set to nil
for input, but to the InOutFunc value
for output. The CloseFunc routine,
on the other hand, has a very easy
ride of it: it simply returns zero.

The input and output routines
follow the previously stated
guidelines to read from or write to
the edit control. Note that
RWEditOutput checks that the
program isn’t terminating.

Remember that CloseFile will
call the InOutFunc routine first. This
is important since the shutdown
code contained in a Delphi 2 appli-
cation calls CloseFile for Output. If
we continue trying to access the
edit control, we are risking an
access violation.

The form unit in the TFDD1.DPR
project, TFDDU.PAS, sets up the
TFDD in the form’s OnCreate han-
dler. We can’t do this in the TFDD
unit initialisation, as it relies on an
object in the form that only gets
created after the initialisation
sections have finished executing.

AssignRWEdit(Input, Edit1);
Reset(Input);
AssignRWEdit(Output, Edit1);
Rewrite(Output);

This allows other event handlers to
use Read/Ln and Write/Ln without
specifying a file variable: Input and
Output will be used implicitly.

There are two buttons and an
edit on the form. The first button

reads two floating point values
from the edit and then writes some
text back in.

The second button reads a string
from the edit control. The code in
Listing 3 (on the next page) from
the two buttons’ OnClick handlers
show how these I/O procedures
can liaise with the edit. The
program is shown in Figure 1.

An Output Only
Debugging Device
This time, for a second example, we
will look at a write-only TFDD. This
one, demonstrated by TFDD2.DPR,
will act as a debugging tracing type
tool: the strings you give to WriteLn
are displayed in a separate win-
dow. When you come to deploy an
application using this TFDD, you
can modify it using a compiler
directive so that no output occurs.

Since this TFDD relies on no ex-
ternal edit controls or other ob-
jects it can set itself up (ie call its
AssignFile substitute on the Output
file variable) in its unit initialisation

unit Rweditu;
interface
uses
 StdCtrls;
procedure AssignRWEdit(var F: TextFile; E: TEdit);
implementation
uses
 Forms, SysUtils;
const
{$ifdef Win32}
 FillerMax = 32;
{$else}
 FillerMax = 16;
{$endif}
type
 TUserData = packed record
 Edit: TEdit;
 Filler: array[SizeOf(TEdit)+1..FillerMax] of Byte;
 end;
 { TUserData = packed record
 case Byte of
 1: (Edit: TEdit);
 2: (Filler: array[1..FillerMax] of Byte);
 end; }
function RWEditOpen(var F: TTextRec): Integer;
 far; forward;
function RWEditInput(var F: TTextRec): Integer;
 far; forward;
function RWEditOutput(var F: TTextRec): Integer;
 far; forward;
function RWEditClose(var F: TTextRec): Integer;
 far; forward;
procedure AssignRWEdit(var F: TextFile; E: TEdit);
begin
 { Set up text file variable }
 with TTextRec(F) do begin
 Handle := $FFFF;
 OpenFunc := @RWEditOpen;
 Mode := fmClosed;
 BufSize := SizeOf(Buffer);
 BufPtr := @Buffer;
 Name[0] := #0;
 { Set up edit control, store it in text file variable }
 TUserData(UserData).Edit := E;
 end;
end;
function RWEditOpen(var F: TTextRec): Integer;
begin

 Result := 0;
 with F do begin
 if Mode = fmInput then begin
 InOutFunc := @RWEditInput;
 FlushFunc := nil;
 end else begin
 Mode := fmOutput;
 InOutFunc := @RWEditOutput;
 FlushFunc := @RWEditOutput;
 end;
 CloseFunc := @RWEditClose;
 end;
end;
function RWEditInput(var F: TTextRec): Integer;
begin
 Result := 0;
 with F, TUserData(UserData).Edit do begin
 BufPos := 0;
 BufEnd := GetTextBuf(PChar(BufPtr), BufSize);
 { Pop a carriage return line feed combo in }
 StrCat(PChar(BufPtr), #13#10);
 Inc(BufEnd, 2);
 Text := ’’; { Clear the edit }
 end;
end;
function RWEditOutput(var F: TTextRec): Integer;
var
 { Temporary PChar holder }
 Buf: packed array[0..255] of Char;
begin
 Result := 0;
 { Gets called when a Delphi 2 app shuts, in closing
 Output. Since it refers to the edit which won’t
 exist, don’t run it }
 if not Application.Terminated then
 with F, TUserData(UserData).Edit do
 if BufPos <> 0 then begin
 { Get PChar with BufPos characters in }
 StrLCopy(Buf, PChar(BufPtr), BufPos);
 { Put that in the edit }
 SetTextBuf(Buf);
 { Reset BufPos }
 BufPos := 0;
 end;
end;
function RWEditClose(var F: TTextRec): Integer;
begin
 Result := 0;
end;
end.

➤ Listing 2

July 1996 The Delphi Magazine 19

➤ Figure 1

procedure TForm1.Button1Click(Sender: TObject);
var D1, D2: Double;
begin
{$ifdef OnePossibility}
 ReadLn(D1, D2);
{$else}
 Read(D1);
 Read(D2);
 ReadLn;
{$endif}
 ShowMessage(Format(’First value: %f’, [D1]));
 ShowMessage(Format(’Second value: %f’, [D2]));
 Write(’Type something in me and push the 2nd button’);
end;

procedure TForm1.Button2Click(Sender: TObject);
var S: String;
begin
 ReadLn(S);
 ShowMessage(Format(’You wrote: %s’, [S]));
 Write(’Game over’);
end;

➤ Listing 3

unit Debugu;
{$define Debugging}
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls, ExtCtrls;
{$ifdef Debugging}
type
 TDebugFrm = class(TForm)
 DebugMemo: TMemo;
 procedure FormClose(Sender: TObject;
 var Action: TCloseAction);
 end;
var DebugFrm: TDebugFrm;
{$endif}
procedure AssignDebug(var F: TextFile);
implementation
{$ifdef Debugging}
{$R *.DFM}
{$endif}
function DebugOpen(var F: TTextRec): Integer; far; forward;
function DebugOutput(var F: TTextRec): Integer; far; forward;
function DebugClose(var F: TTextRec): Integer; far; forward;
procedure AssignDebug(var F: TextFile);
begin
 { Set up text file variable }
 with TTextRec(F) do begin
 Handle := $FFFF;
 OpenFunc := @DebugOpen;
 Mode := fmClosed;
 BufSize := SizeOf(Buffer);
 BufPtr := @Buffer;
 Name[0] := #0;
 end;
end;
function DebugOpen(var F: TTextRec): Integer;
begin
 Result := 0;
 with F do begin
 if Mode = fmInput then
 Result := 5 { Access denied }
 else begin
 Mode := fmOutput;
 InOutFunc := @DebugOutput;
 FlushFunc := @DebugOutput;

 end;
 CloseFunc := @DebugClose;
 end;
{$ifdef Debugging}
 DebugFrm := TDebugFrm.Create(Application);
{$endif}
end;
function DebugOutput(var F: TTextRec): Integer;
var Buf: array[0..255] of Char;
begin
 Result := 0;
{$ifdef Debugging}
 { This gets called when a Delphi 2 app shuts, in closing
 Output. Since it refers to the form which won’t exist,
 don’t run it }
 if not Application.Terminated then begin
 { If output form ain’t showing, show it }
 if not DebugFrm.Visible then
 DebugFrm.Show;
 with F do begin
 StrLCopy(Buf, PChar(BufPtr), BufPos);
 DebugFrm.DebugMemo.SelText := StrPas(Buf);
 BufPos := 0;
 end;
 end;
{$endif}
end;
function DebugClose(var F: TTextRec): Integer;
begin
 Result := 0;
{$ifdef Debugging}
 DebugFrm.Free;
{$endif}
end;
{$ifdef Debugging}
procedure TDebugFrm.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 Action := caNone;
end;
{$endif}
initialization
 AssignDebug(Output);
 Rewrite(Output);
end.

section. You can see this at the end
of Listing 4 (file DEBUGU.PAS).

The AssignDebug procedure does
much the same as the earlier
AssignRWEdit did, leaving most of
the TFDD function pointers to be
set up by the OpenFunc routine
DebugOpen). This in turn ensures the
device is only opened for output by
causing an I/O error 5 (access
denied) if opened with Reset.
Otherwise it sets up the pointers
and creates the debug output form
(under control of conditional com-
pilation). DebugClose will similarly
free the form.

The output routine ensures the
form is visible. This means that the
first WriteLn will cause the debug-
ging form to appear on the desktop,
as it starts off hidden. It then sets
the selected text in the form’s
memo to be the supplied text.
Normally, there will be no selected
text, and the caret will be at the end
of the memo’s text, meaning the
new text will be appended to the
memo. Notice again that condi-
tional compilation is used to
prevent references to the form. In

➤ Listing 4

20 The Delphi Magazine Issue 11

➤ Figure 2fact the entire debugging form
class is conditionally compiled, as
is the compiler directive that links
the form into the executable. There
is only one event handler in the
form, for OnClose, which prevents it
from being closed apart from by
normal application termination.

The form that uses this TFDD has
a button, whose OnClick handler
writes a message to the debug
window, and an edit control whose
OnChange handler keeps updating
the debug window with the current
text in the edit. One of these is
shown below and the program,
showing the debug window is in
Figure 2.

procedure TForm1.Edit1Change(
 Sender: TObject);
begin
 WriteLn(’Edit says: ’ +
 Edit1.Text);
end;

In order to get a deployable appli-
cation, with no TFDD form re-
source included, simply remove
the compiler directive from the top
of the unit. It currently defines the

symbol Debugging. Deleting the line
will stop it being defined.

TFDD References
For more information, take a look
at the Borland Pascal With Objects
7.0 Language Guide, Chapter 14, on
Input and Output. Also, from the
Delphi 1 source files:
\SOURCE\RTL\WIN\WINCRT.PAS

and from the Delphi 1 or 2 source:

\SOURCE\VCL\PRINTERS.PAS

Brian Long is a freelance Delphi
consultant and trainer based in
the UK. He is available for book-
ings and can be contacted by email
on 76004.3437@compuserve.com

Copyright ©1996 Brian Long
All rights reserved.

July 1996 The Delphi Magazine 21

	Writing A Text File Device Driver
	TTextRecRecord Type
	AssignFile Substitute Procedure
	OpenFunc Function
	InOutFunc Function
	FlushFunc Function
	CloseFunc Function
	An Input/Output Device
	An Output Only Debugging Device
	TFDD References

